已知点A(0,-2)B(0,4),动点P(X,Y)满足向量PA※向量PB=Y^2-8
提问 已知P的轨迹方程为x*x-2y=0
设P的轨迹与直线y=x+2交于C、D两点;求证OC垂直于OD
人气:443 ℃ 时间:2020-01-26 05:57:32
解答
PA·PB=x²+(-2-y)(4-y)=y²-8.
x²=2y.[P点的轨迹]与y=x+2交于
(1+√5,3+√5),(1-√5,3-√5)
OC·OD=1-5+9-5=0.∴OC⊥OD
推荐
- 已知点A(0,-2),B(0,4),动点P(x,y)满足PA•PB=y2-8,则动点P的轨迹方程是 _ .
- 已知点A(-2,0)、B(3,0),动点P(x,y)满足PA•PB=x2,则点P的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线
- 已知点A(-2,0)、B(3,0),动点P(x,y)满足PA•PB=x2,则点P的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线
- 已知点A(5,0),B(-6,0),动点P(x,y)满足向量PA*向量PB=x则P的轨迹方程
- 已知点A(√2.0),B(-√2.0),动点P在Y轴上的射影为Q.向量PA点乘向量PB=2向量PQ^
- 整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
- 要求:1、整体思想
- 8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢