设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn/n)都在函数f(x)=x+an/2x的图像上
令g(x)=(1+2/an)^n(n属于N*),求证2《g(n)
人气:186 ℃ 时间:2019-09-29 04:53:06
解答
点(n,Sn/n)都在函数f(x)=x+an/2x
=》Sn/n=n+an/(2n)
=>Sn=n^2+an/2
an=Sn-S(n-1)=(n^2-(n-1)^2)+(an-a(n-1))/2
=>an=2n-1+an/2-a(n-1)/2
=>an+a(n-1)=4n-2 (a)
=>a(n-1)+a(n-2)=4n-6 (b)
=>an-a(n-2)=4 (i)
又a1=S1=1+a1/2
=>a1=2 (ii)
S2=a1+a2=4*2-2=6
=>a2=4 (iii)
(i)(ii)(iii)=>
=>an=2n
g(n)=(1+2/an)^n=(1+1/n)^n
最后就是归结到证明2
推荐
- 已知数列{an}的前n项和为Sn,对一切正整数,点(n,Sn)都在函数f(x)=2^(x+2)-4的图像上,1 求其通项公式 2 设bn=an×log2an 求bn的前n项和Tn.
- 已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为Kn. (1)求数列{an}的通项公式; (2)若bn=2Knan,求数列{bn}的
- 已知函数f(x)=3x^2-2x,数列{an}的前n项和为Sn,点(n.Sn)在函数f(x)的图像上,数列{bn}满足
- 设数列{an}的前n项和为Sn,点(n,Snn)(n∈N*)均在函数y=-x+12的图象上. (Ⅰ)写出Sn关于n的函数表达式; (Ⅱ)求证:数列{an}是等差数列; (Ⅲ)求数列{|an|}的前n项的和.
- 已知函数y=f(x)的图像经过坐标原点,且f'(x)=2x-1,数列{an}的前n项和Sn=f(n)(n属于N*)
- 1、闭合电路中导线里的电场分布应该是与导线同向的,也就是说电流在电源电场的作用下
- 绝对值的化简 lx-1l+lx-3l
- 圆锥的表面积、体积、底面积计算公式(用文字表示)
猜你喜欢