即F(x)=g(x)-f(x)-m=0在[1,2]上有解,
即-m=f(x)-g(x)=log2(2x+1)-log2(2x-1),在[1,2]上有解,
设m(x)=log2(
| 2x+1 |
| 2x-1 |
| 2x-1+2 |
| 2x-1 |
| 2 |
| 2x-1 |
当x∈[1,2]时,y=1+
| 2 |
| 2x-1 |
| 2 |
| 2x-1 |
则m(2)≤m(x)≤m(1),
即log2
| 4 |
| 3 |
则log2
| 4 |
| 3 |
即-log23≤m≤-log2
| 4 |
| 3 |
故m的取值范围是[-log23,-log2
| 4 |
| 3 |
| 2x+1 |
| 2x-1 |
| 2x-1+2 |
| 2x-1 |
| 2 |
| 2x-1 |
| 2 |
| 2x-1 |
| 2 |
| 2x-1 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |