即F(x)=g(x)-f(x)-m=0在[1,2]上有解,
即-m=f(x)-g(x)=log2(2x+1)-log2(2x-1),在[1,2]上有解,
设m(x)=log2(
2x+1 |
2x-1 |
2x-1+2 |
2x-1 |
2 |
2x-1 |
当x∈[1,2]时,y=1+
2 |
2x-1 |
2 |
2x-1 |
则m(2)≤m(x)≤m(1),
即log2
4 |
3 |
则log2
4 |
3 |
即-log23≤m≤-log2
4 |
3 |
故m的取值范围是[-log23,-log2
4 |
3 |
2x+1 |
2x-1 |
2x-1+2 |
2x-1 |
2 |
2x-1 |
2 |
2x-1 |
2 |
2x-1 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |