菱形ABCD中,点E、F分别在BC、CD边上,且∠EAF=∠B . (1).如果∠B=60°,求证:AE=AF;
(2).如果∠B=α,(0°<α<90°)(1)中的结论:AE=AF是否依然成立,请证明;
(3).如果AB长为5,菱形ABCD面积为20,设BE=x,AE=y,求y关于x的函数解析式,兵写出定义域.
人气:451 ℃ 时间:2019-08-17 17:26:09
解答
(1)连接AC.不难得出以下结论:∠CAB=∠ACD=60°,AC=AB,
因为∠EAF=∠B=60°,所以,∠EAF-∠EAC=∠BAC-∠EAC,即∠CAF=∠BAE.
所以,三角形ABE全等三角形ACF,所以,AE=AF.
(2)(1)结论仍然成立.作AM垂直BC于M,AN垂直CD于N,显然,AM=AN,∠MAN=∠B=α.∠AME=∠ANF=90°.
因为∠EAF=∠B=∠MAN,所以,∠EAF-∠MAF=∠MAN-∠MAF(如果图画的稍不同,可能是减∠EAN),所以,∠EAM=∠FAN,所以,三角形EAM全等于三角形FAN,所以,AE=AF.
(3)当AB=5,S菱形ABCD=20时,AM=4,BM=3,所以,EM=|x-3|.
在直角三角形EAM中,由勾股定理有,AE=根号(EM^2+AM^2),
即有,y=根号((x-3)^2+16)=根号(x^2-6x+25).
因为点E在边BC上,所以x大于0且小于5(带等号也可以).
推荐
猜你喜欢
- 正多边形面积240,周长60,求边心距和内切圆半径
- 如果物体所受合力为零,则合力对物体做的功一定为零.这句话对吗?
- 当时的报纸上宣传“人有多大胆,地有多大产”的口号对不对?他们说的对吗?你怎么看?
- 如图,在三角形abc中,角b=50度,角c=70度,ad是三角形abc的角平分线,求角bad和角adc的度数.
- 数学题零件
- 对一定的导体他两端的电压与通过它的电流强度的比值保持不变?
- 《行道树》中说“我们的命运是被安排定了”,又说“这种命运事实上是我们自己选择的”,这是不是矛盾?应该如何理解?
- a4+b4; 如何分解