> 数学 >
一个直角三角形两直角边为A.B(B是质数),斜边为C(m.t.n均为正整数)求证2(b+m+1)是完全平方数
打错了 ABC均为正整数
人气:192 ℃ 时间:2019-12-14 13:20:57
解答
由勾股定理易得a2+b2=c2,则a2=c2-b2=(c+b)(c-b),因为a为质数,所以c+b=a2,c-b=1,两式相减可得a2=2b+1,代入2(a+b+1)即可得证.∵a,b是Rt△ABC的两条直角边,c是斜边,
∴a2+b2=c2,
即a2=c2-b2=(c+b)(c-b),
∵a为质数,
∴c+b=a2,c-b=1,
∴a2=2b+1,
∴2(a+b+1)=a2+2a+1=(a+1)2,
∴2(a+b+1)是完全平方数.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版