a |
x |
∵f(x)在x=1处取得极值,
∴f′(1)=0,即2+a=0,a=-2,
检验x=1处d导数左负右正,故为极值,
∴a=-2;
(2)g(x)=f(x)+
2 |
x |
2 |
x |
∴g′(x)=2x+
a |
x |
2 |
x2 |
由于函数g(x)=f(x)+
2 |
x |
则g′(x)≤0在[1,4]上恒成立,
即有2x3+ax-2≤0,
-a≥2x2-
2 |
x |
2 |
x |
2 |
x2 |
即h(x)在[1,4]上递增,h(4)最大,且为
63 |
2 |
∴-a≥
63 |
2 |
63 |
2 |
2 |
x |
a |
x |
2 |
x |
2 |
x |
a |
x |
2 |
x2 |
2 |
x |
2 |
x |
2 |
x |
2 |
x2 |
63 |
2 |
63 |
2 |
63 |
2 |