在三角形ABC中,已知三个边abc成等比数列,证明tanA/2*tanC/2>=1/3,
答案上面的提示是说利用
a+c>=2b,sinA+sinc>=2sinB
人气:245 ℃ 时间:2020-05-08 01:01:23
解答
在三角形ABC中已知三个边abc成等比数列因为tanA•tanC=(tanB)^2,设公比为q,tanA=tanB/q,tanC=q*tanB
由tanB=-tan(A+C)=(tanA+tanC) /(1-tanB)^2,可得q^2+(1-(tanB)^2)q+1=0,
再由Δ >0,可得范围
推荐
- 已知abc分别是△ABC中角ABC的对边,若abc成等比数列,求证(1/tanA)+(1/tanC)=(1/sinB)
- 三角形中,角A,B,C所对边a,b,c,已知sinB(tanA+tanC)=tanAtanC.1,证明abc成等比数列2,若a=1 b=2求面积
- △ABC中,已知sinB(tanA+tanC)=tanAtanC求证a,b,c成等比
- 在三角形ABC中,∠A、∠B、∠C的对边是a、b、c.已知sinB=5/13,且a、b,c成等比数列 1、1/tanA+1/tanC=?
- 三角形ABC中,内角A、B、C的对边分别为a、b、c,已知a、b、c成等比数列,cosB=3/4 (1)求1/tanA+1/tanC...
- 正长花岗岩鉴定特征,要具体点的
- 莎士比亚《威尼斯商人》的故事梗概
- 已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?
猜你喜欢
- 血液一离开人体,血液中的氧含量、二氧化碳含量就会发生变化吗?还是短时间内不变要过段时间才会发生变化
- the,park,bus,which,to,can,they,take连词成句
- 不吃五谷吃青草,是什么动物?
- 有几个问题要问:
- Some students held a party ___ money for the charity last noght.
- 问个英语问题 The ratio of the work done by the machine
- 电路不同点电位不同,电位是在电场中才有意义的,难道电路包围在电场中,这--,请帮忙解释电路中电子移动的原
- 笑笑用6天看完了一本书,每天看这本书的七分之一还多3页,这本书共多少页?