设正系数一元二次方程ax^2+bx+c=0有实根,证明:
(1)min{a,b,c}小于等于1/4(a+b+c)
(2)max{a,b,c}大于等于4/9(a+b+c)
人气:145 ℃ 时间:2019-08-18 06:50:42
解答
(1)一元二次方程ax^2+bx+c=0有实根,则b^2>=4ac,b>=2√(ac),a+b+c>=a+b+√(ac)+√(ac),a,b,√(ac),√(ac)这4个数之和小于等于a+b+c,故这4个数中最小的数必小于等于a+b+c的4分之一,由于√(ac)是a.c的几何平均,故a,c之一必是4个数中最小的,从而得min{a,b,c}小于等于1/4(a+b+c)
(2)(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca,分两种情况讨论
1.a>=c,由b^2>=4ac得b>=2c,c^2
推荐
猜你喜欢
- to,for和of的区别和用法
- 1.— We want someone to design the new art museum for us.— ________ the young fellow have a try?A.May B.Shall C.Will D.Ne
- 质量为m的物体在平行于水平面的一恒力F的作用下沿着倾角为a的斜面上加速运动,物体与斜面的动摩擦因数为u
- “邂逅”与“相遇”
- 一根钢筋长1/2米,另一根比他长2/5米.两根钢筋一共长多少米?
- 某校宿舍,若每间住一人,则有十人无住处;若每间住三人,则有十间无人住,问:有
- 用;望”写4个词语分别填进句子里 1.对桃花心木树苗的未来,种树人充满了( )
- 当只用一种正多边形镶嵌平面时,则该正多边形的一个内角的度数必须是--;用两种或多种正多边形时,首先需要计算出每个多边形内角的度数,若这些内角能够在一点围成--:则可以铺满地面,但要注意每种多边形的数量不一定相等