点P为圆x^2+y^2=4上的动点
已知点P为圆x^2+y^2=4上的动点,且P不在x轴上,PD垂直x轴,垂足为D,线段PD中点Q的轨迹为曲线C,过定点M(t,0)(0
人气:453 ℃ 时间:2020-06-11 11:53:08
解答
先求出 C方程为椭圆 x^2+4y-4=0
设A(x1,y1) B(x2,y2) N(m,0)
然后设直线 y=kx-kt
与椭圆联立 韦达定理 得到 x1+x2=8k^2t/(4k^2+1) x1x2=(4k^2t^2-4)/(4k^2+1)
因为是角平分线 所以直线AN BN的斜率之和为0
所以 y1/(x1-m)+y2/(x2-m)=0
用直线方程把y1,y2换掉 然后整理到最简 再把韦达定理的式子带进去进一步化简
最后得出N (4/t,0)
推荐
猜你喜欢
- 请问I am lily who live in Paris.和 I am lily who lives in Paris 哪个正确
- 一个长方体冰柜,从里面量90cm,宽50cm,深50cm.它的容积是多少立方分米
- 美学中的名词解释 .
- “1.5*X的值等于3.6:4.8的值”怎么算比例(数学)
- 英语翻译
- 复合重句 中,where 和which用法有点歧义,如下题
- 甲乙两人相向而行甲的速度是20千米/小时,乙的速度是18千米/小时,他们在离中点3千米是相遇,问全?
- 在四边形ABCD中,AB>CD.E.F分别是对角线BD.AC的中点,求证:EF>1/2(AB-CD)