当n=1时,a1=a+b+c;当n≥2时,an=Sn-Sn-1=2an+b-a
由于a≠0,∴当n≥2时,{an}是公差为2a等差数列.
要使{an}是等差数列,则a2-a1=2a,解得c=0.
即{an}是等差数列的必要条件是:a≠0,c=0.
充分性:
当a≠0,c=0时,Sn=an2+bn.
当n=1时,a1=a+b;当n≥2时,an=Sn-Sn-1=2an+b-a,
显然当n=1时也满足上式,
∴an=2an+b−a(n∈N*)⇒an−an−1=2a(n∈N*)
∴{an}是等差数列.
综上可知,数列{an}是等差数列的充要条件是:a≠0,c=0.