已知函数f(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a的取值范围是______.
人气:343 ℃ 时间:2020-04-24 10:18:42
解答
求导函数:f′(x)=3x2-2ax+3a,
∵函数f(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值,又有极小值,
∴△=4a2-36a>0,∴a<0或a>9
故答案为(-∞,0)∪(9,+∞)
推荐
- 已知函数f(x)=x^3-2/3ax^2+b(a,b为实数且a>1)在区间【-1,1】上的最大值为1,最小值为-2.求f(x)的解析式
- 已知函数f(x)=ax3-6ax2+b,问是否存在实数a、b使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a、b的值.并指出函数的单调区间.若不存在,请说明理由.
- 已知函数f(x)=(1-x)/ax+lnx,且a为正实数,当a=1时,求f(x)在[1/2,2]上的最大值和最小值
- 已知函数f(x)=x3-3/2ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2. (1)求f(x)的解析式; (2)若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围.
- 已知函数f(x)=2^2x-5/2*2^x+1-6,其中x属于[0,3], (1)求f(x)最大值和最小值 (2)若实数a满足f(x)-a≧0恒成立,求a
- 师异道,人异论,百家殊方,旨意不同...凡不在六艺之科,孔子之术者,皆绝其道,勿使并进...
- 怎样判断一条题目是证明还是求值?
- 已知,如图,在梯形ABCD中,AD//BC,EF是梯形的中位线(两腰中点的连线).求证:EF//AD,EF//BC,EF=0.5(AD+BC).
猜你喜欢