若数列{an}是等差数列,an≠0,则【1/a1a2】+【1/a2a3】+`````+【1/a(n-1)an】=?
人气:125 ℃ 时间:2020-03-28 14:58:53
解答
设公差为d,则【1/a1a2】+【1/a2a3】+`````+【1/a(n-1)an】
=(1/d)*[(1/a1-1/a2)+(1/a2-1/a3)+(1/a3-1/a4)+...+(1/a(n-1)-1/an)]
=1/d*(1/a1-1/an)
=1/d*(an-a1)/(an*a1)
=1/d*(n-1)d/(an*a1)
=n-1/(an*a1)
推荐
- {an}是等差数列,an≠0,求1/a1a2+1/a2a3+.+1/a(n-1)an
- 【急】已知数列an满足1/a1a2+1/a2a3+……1/an-1an=(n-1)/a1an,求证为等差数列
- 已知数列an满足1/a1a2+1/a2a3+……1/an-1an=(n-1)/a1an,求证为等差数列
- 对于数列{an}任意n∈N*数列{an+a(n+1)}是公差为1的等差数列,且a1a2,a2a3,a3a4成公差为2的等差数列,求{an}通项公式(a1=1,a2=2,a3=2,a4=3)
- 已知数列{an},若1/a1a2+1/a2a3+…+1/anan-1=n/anan+1,求证{an}为等差数列.
- 糖蛋白受体蛋白,载体蛋白的不同
- 10x²+30x+20约分 怎么会变成10(x+1)(x+2) x³+2x²-x-2约分怎么变成(x+2)(x+1) (x-1)
- x-3/8x+110=75%+10
猜你喜欢