由题意得f(x)=f(x+π),且f(x)=f(-x)
则f(-x)=f(-x+π)=f(x)
f(x)以π/2为对称轴
由x∈[0,π/2]时,f(x)=sinx
则当x∈[π/2,π]时,-x+π∈[0,π/2],f(x)=f(π-x)=sin(π-x)=sinx
故当x∈[0,π]时,f(x)=sinx
(1) 当x∈[-π,0]时,-x∈[0,π],f(-x)=-sinx=f(x)
所以 当x∈[-π,0]时,f(x)=-sinx.
(2) 由(1)可以知道,对x∈R,f(x)=|sinx|
当f(x)≥1/2时,x∈[π/6+kπ,5π/6+kπ],k∈Z