题:设数列{An}的通项公式为An=1/n2+4n+3,则其前n项的和为多少?
5/12-1/2n+4-1/2n+6
人气:225 ℃ 时间:2020-03-28 15:20:11
解答
an=1/(n+1)(n+3)=1/2*[1/(n+1)-1/(n+3)]
所以Sn=1/2*[1/2-1/4+1/3-1/5+……+1/n-1/(n+2)+1/(n+1)-1/(n+3)]
=1/2*[1/2+1/3-1/(n+2)-1/(n+3)]
=(5n^2+13n)/(2n^2+10n+12)
推荐
猜你喜欢
- 白兔的只数是黑兔的2/5,灰兔的只数是白兔的1/3,有灰兔2只,你知道黑兔有多少只吗?
- 你怎样做一份苹果奶昔呢?用英语怎么说?
- 什么是光波的波长
- his father loves he very much/his father loves him very much 这两个句子那个对
- 函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x²–x+1,那么当x>1时,f(x)的
- Do you know the girl __the red sweater?Awear Bwore Cin 为何in 不行,
- 冯骥才日历北师大课后练习题~
- 设区域D:x²+y²=2x与x轴围成的上半圆,则二重积分∫∫f(x,y)dxdy=?(用极坐标法表示)