设双曲线x^2/3-y^2=1上一点P,F1,F2为两焦点,求向量PF1×向量PF2的取值范围
人气:117 ℃ 时间:2019-08-21 05:41:57
解答
∵c²=a²+b² ∴c=2∴F1(-2,0),F2(2,0)双曲线参数方程为:x=√3secθ,y=tanθ(这里:-π/2<θ<π/2或者:π/2<θ<3π/2)∵P点坐标:(√3secθ,tanθ)∴向量PF1=(-2-√3secθ,-tanθ),向量PF2=(2-√...
推荐
- 设F1,F2是双曲线x2a2−y2b2=1(a>0,b>0)的左,右焦点,若双曲线的右支上存在一点P,使PF1•PF2=0,且△F1PF2的三边长构成等差数列,则此双曲线的离心率为( ) A.2 B.3 C.2 D.5
- 设F1,F2是双曲线x2/4a-y2/a=1的两个焦点,点P在双曲线上,向量PF1*向量PF2=0,向量|PF1|*向量|PF2|=2,
- 设F1、F2分别是双曲线x²-y²/9=1的左、右焦点,若点P在双曲线上,且向量PF1*向量PF2=0,则|向量PF1+向量PF2|等于
- 设f1 f2分别为双曲线x方-y方=2的两个焦点 p是双曲线上的任意一点则向量pf1×pf2的取值范围是
- 设F1,F2分别是X^2-Y^2/3=1的左右焦点,P是双曲线上一点,且满足PF1⊥PF2,则|PF1|.|PF2|(此处为向量)
- 165×38-38×65的简便方法怎么算
- 如何计算平方面积与立方面积
- 以字母“i”结尾的单词
猜你喜欢