1、分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用s1,s2,s3表示,请证明s1=s2+s3
2、准备4个全等的直角三角形,进行拼图(2)(3),利用面积求等式.我国古代数学家已经利用它来验证我们学过的勾股定理.(选其中一个进行验证)
人气:360 ℃ 时间:2019-11-21 17:51:31
解答
1.设△ABC,∠C=90°,
AB=c,AC=b,BC=a,
∴S1=1/2·(c/2)²π=πc²/8.
S2=πb²/8,
S3=πa²/8,
由c²=a²+b²,
∴S1=S2+S3.
2.我国古代数学家赵爽点《勾股圆方图》:
四个全等的直角三角形,两直角边分别为a和b(b>a)
加上一个小正方形(边长为b-a),可以拼成一个大正方形,
面积为三角形斜边C的平方.
S=1/2·ab×4+(b-a)²
=2ab+b²-2ab+a²
=a²+b²=C²
这样就巧妙证明了勾股定理.
推荐
- 如图1 分别以直角三角形ABC三边为直径向外作三个半圆 其面积分别用S1 S2 S3表示 则不难证明S1=S2+S3
- 如图1,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别为S1、S2、S3表示,则不难证明S1=S2+S3.
- 2.如图2,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别是S1、S2、S3,那三个半圆的面积关系?证明
- 如图(1)以直角三角形ABC三边为直径向外作三个半圆,则它们有S2+S3=S1 S2+S3=S1关系
- 分别以直角三角形ABC的三边为边,向外作三个等边三角形,其面积分别为S1,S2,S3
- 已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=
- 我是新高一学生,对于v-t(速度和时间)图像怎么去看速度的方向和加速度的方向,还有x-t
- (-30/7)/(3/1-5/3+3/10) 负30分之7除以三分之一减五分之三加十分之三.
猜你喜欢