如果AB=BA,矩阵B就称为与A可交换.设A= 求所有与A可交换的矩阵
想知道这种题的解题思路,至于A到底等于什么,一是我打不出来,而是如果换别的数该怎么办,请会的同志帮帮忙吧
人气:393 ℃ 时间:2020-03-19 20:03:58
解答
首先,你要知道,两个矩阵可交换,说明它们都是方阵.所以先设要求的矩阵为和A同阶的形式.
然后,根据AB=BA,用矩阵的乘法表示出来
最后,左右两边对应位置的元素相等,就解出来了
不知我说清楚没有
推荐
- 若AB=BA,则矩阵B就称为矩阵A的可交换矩阵.试求矩阵A的可交换矩阵应满足的条件. A=1 1 0 1
- 若复矩阵A与B可交换,即AB=BA,证明:A,B至少有一公共的特征向量
- 若复矩阵A与B可交换,即AB=BA,证明:A,B至少有一公共的特征根
- 若AB=BA,AC=CA.证明A.B.C是同阶矩阵
- 如果AB=BA,则称B与A可交换,求所有与A可交换的矩阵B,
- 已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=
- 我是新高一学生,对于v-t(速度和时间)图像怎么去看速度的方向和加速度的方向,还有x-t
- (-30/7)/(3/1-5/3+3/10) 负30分之7除以三分之一减五分之三加十分之三.
猜你喜欢