真心希望能采纳
①2×cos20×cos20/(2cos50)=sin40/(2cos50)=sin(90-50)/(2cos50)=cos50/(2cos50)=1/2
②2×(√2/2 cos15+√2/2 sin15)=2×sin(45+15)=√3
③sin(180-17)×sin(180+43)+sin(180+73)×sin(360-47)
=sin17×(-sin43)+(-sin73)×sin(-47)
=-sin17×sin43+sin73×sin47
=-sin(90-73)×sin(90-47)+sin73×sin47
=-cos73×cos47+sin73×sin47
=-cos(73+47)=-cos120=1/2
④1+tan75/1-tan75
=(tan45+tan75)/(1-tan75tan45)
=tan(75+45)=tan120=-√3sin20*cos20怎么算的?利用二倍角公式分子分母同乘以2,再根据2sinAcosA=sin2A