在二次函数f(x)=ax^2+bx+c中,若b^2=2ac,且f(0)=-5,求f(x)的最值
人气:262 ℃ 时间:2020-03-31 21:48:31
解答
f(0)= 0 + 0 + c = c = -5所以,c = -5因为 b^2 = 2ac = -10aa = -b^2/10f(x)=ax^2 + bx + c = -(b^2/10)x^2 + bx - 5= -(1/10)(b^2x^2 - 10bx + 25) + 2.5 - 5= -(1/10)(bx - 5)^2 - 5/2当bx - 5 = 0时,取最大值.最...
推荐
- 已知二次函数f(x)=ax^2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
- 设二次函数f(x)=ax^2+bx+c(a,b,c∈R,a≠0)满足条件如下
- 已知二次函数f(x)=ax^2+bx满足f(2)=0,且方程f(x)=x有等根.
- 二次函数f(x)=ax^2+bx+c(a不=0)满足f(x+2)=f(2-x),且函数过(0,3),且b^2-2ac=10a^2,求此二次函数解析式
- 已知二次函数f(x)=ax^2+bx+1(a>0),F(x)={f(x) (x>0)-f(x)(x<0)},若f(-1)=0
- (√5+1)^2008 - 2(√5+1)^2004 + (√5+1)^2000=?怎么算?.
- My mother may be at home.=_______my mother _______at home.
- sin(a+π/3)+2sin(a-π/3)-根号3cos(2π/3-a)
猜你喜欢