> 数学 >
证明(sinα)^2+(sinβ)^2+2sinαsinβcos(α+β)
(sinα)^2+(sinβ)^2+2sinαsinβcos(α+β)=0
人气:265 ℃ 时间:2020-05-20 04:33:39
解答
没结论啊 左边=(sina)^2+(sinb)^2+2sinasinb(cosacosb-sinasinb) =(sina)^2(1-(sinb)^2)+(sinb)^2(1-(sina)^2)+2sinacosasinbcosb =(sina)^2(cosb)^2+(cosa)^2(sinb)^2+2sinacosasinbcosb =(sinacosb+cosasinb)^2=(sin(a+b))^2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版