解由y=sin2t+sint
求导y'=2cos2t+cost
令y'=0
即2(2cos^2t-1)+cost=0
即4cos^2t+cost-2=0
解得cost=(-1+√33)/8或cost=(-1-√33)/8
又由y=4cos^2t+cost-2知
当cost=(-1+√33)/8时,y=sin2t+sint有最大值
此时sint=√1^2-[-1+√33)/8]^2=√(30+2√33)/8
故y=sin2t+sint
=2sintcost+sint
=√(30+2√33)/8(2(-1+√33)/8+1)
=√(30+2√33)/8((3+√33)/4)