> 数学 >
已知数列an是等差数列,且a1≠0,Sn为这个数列的前n项和.求1、lim nan/Sn 2、lim (Sn+Sn+1)/(Sn+Sn-1)
人气:127 ℃ 时间:2020-02-03 13:35:05
解答
1、
Sn=(a1+an)n/2
所以nan/Sn=2an/(a1+an)
=2[a1+(n-1)d]/[2a1+(n-1)d]
上下除以(n-1)
=2[a1/(n-1)+d]/[2a1/(n-1)+d]
n-1趋于无穷,所以1/(n-1)趋于0
所以极限=2d/d=2
2、
原式=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]
=(2n²+4n+2)/2n²
=1+2/n+1/n²
所以极限=1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版