在三角形ABC中,a,b,c分别是A,B,C,的对边,若向量m=(2,0)与n=(sinB,1-cosB)所成的角为 π/3
(1)求角B的大小
(2)若b=根号3,求a+c的最大值
ps:用高一的学习内容
人气:498 ℃ 时间:2019-08-18 15:05:36
解答
m=(2,0),说明m与X轴同向,n与m的夹角就是n对于X轴的倾角,所以:
(1-cosB)/√[sinB^2+(1-cosB)^2]=sin(π/3)
上式化简为:
√[(1-cosB)/2]=√3/2
cosB=-1/2
B=π-π/3=2π/3
延长AB到D使BD=BC,则:
a+c=AD,∠D=∠B/2=60°
在△ADB中:
b/sinD=AD/sin∠ACD
a+c=(b/sinD)sin∠ACD
∠ACD=90°,max(a+c)=2那些打钩,上标我不懂啊,有没有其他解法根号啊
推荐
- 已知向量m=(sinB,1-cosB),且与向量n=(2,0)所成角为π/3,其中 A,B,C是三角形ABC的内角
- 已知向量m=(sinB,1-cosB),且与向量n=(2,0)夹角为π/3,其中A,B,C是三角形ABC的内角
- 高中数学:在三角形ABC中,a b c分别是A B C的对边,若向量m=(2,0)与n=(sinB,1-cosB)所成角为(派/3),求角B...
- 在三角形ABC中,角ABC的对边分别为abc,若向量m=(2,0)与n=(sinB,1-cosB)的夹角为π/3
- 在三角形ABC中,角A、B、C所对的边分别为a、b、c,设向量m=(cosB,sinB),向量n=(0,根号3),且向量m-向量n为单位向量
- 李白描写大自然的诗
- 【要算术法不要方程``
- ln(1+e^x)/x,当x趋于正无穷大时的极限
猜你喜欢