已知数列{an}中,a1=1,an=an-1·3^(n-1)(n≥2),设函数f(n)=log3an/9^n(n∈N*),数列{bn}的前n项和为f(n)
⑴求{bn}的通项公式.
⑵求{|bn|}的前n项和.
人气:315 ℃ 时间:2020-04-03 02:12:49
解答
1
f(n)=log3an/9^n
f(n-1)=log3an-1/9^(n-1)
bn=f(n)-f(n-1)=log3an/9^n-log3an-1/9^(n-1)=log3an/9an-1
而:an=an-1·3^(n-1)
bn=log3an/9an-1
=log3[3^(n-1)/9]=log3[3^(n-3)]=n-3
b1=f(1)=-2 也成立,
所以bn=n-3
2
b1=-2
S=n*(-2+n-3)/2=n*(n-5)/2
推荐
- (2012•安徽模拟)已知数列{an},{bn}满足a1=1,且an,an+1是函数f(x)=x2-bnx+2n的两个零点,则b10等于( ) A.24 B.32 C.48 D.64
- 设函数f(x)满足2f(x)-f(1/x)=4x-2/x+1,数列{An}和{bn}满足A1=1,A(n+1)-2An=f(n),bn=A(n+1)-An
- 已知函数f(x)=3(x-1)/2,若数列an满足a(n+1)=f(an)·a1=2 (1)求an (2)若bn=(an)^2+2,求数列{bn}的最小项
- 已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{1/bnbn+1}的前n项和Sn=_.
- 已知函数f(x)=2x/(x+1),数列{an}满足a1=4/5,a(n+1)=f(an),bn=1/an-1.
- “成大事者,争百年,不争一息”的英语翻译
- 根据课文《跨越百年的美丽》的内容,用上“美丽”一词,写两句以上通顺连贯的话
- Big Big World歌词
猜你喜欢