已知AB为抛物线Cy^=4x的不同两点,F为抛物线的焦点,若FA=-4FB(为向量),则直线AB的斜率为
A±2/3 B±3/2 C±3/4 D±4/3
人气:257 ℃ 时间:2019-10-23 04:42:25
解答
y=4x^2 焦点为(1,0)过焦点直线与抛物线交于AB两点.分别过AB作x轴的垂线,那么得到的两个三角形相似.FA的长度是FB的四倍假设B点坐标(1-x,-y)相似得到A点坐标(1+4x,4y)BF的长度 1-x+1=根号( (1-x-1)^2+y^2)得到4x=2-y^2...
推荐
- 已知过抛物线y^2=4X的焦点F的直线交抛物线于AB两点,过原点O作OM向量,使OM向量垂直AB向量,垂足为M,求点M的轨迹方程
- 过抛物线y^2=2px(p>0)的焦点F的直线l交抛物线于A,B两点,交准线于点C,若向量CB=2向量BF,则直线AB斜率为
- 已知直线L经过抛物线y²=2Px(p>0)的焦点F且与抛物线交于AB两点,若向量AF=4向量BF,求直线AB的斜率
- 抛物线Y等于4x^2 A、B为抛物线上不同两个点 焦点为F 若向量FA等于负4倍FB ,则直线AB斜率是多少
- 抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率
- 在比例尺是1:40000的地图上,两地相距5厘米,如果在比例尺是1:25000的地图上,两地间的距离是多少厘米?
- 星系为何曾螺旋状运动
- 有关送东阳马生序的练习题
猜你喜欢