已知向量a=(根号3,1),向量b=(1/2,根号3/2),且存在实数k和t,使得x=a+(t^2-3)b,y=-ka+tb,且x垂直y
试求﹙k+t^2﹚/t的最小值
人气:385 ℃ 时间:2019-08-21 19:28:00
解答
显然有a点乘b = 0则有向量a和b垂直已知x=向量a+(t^2-3)b,y=-ka+tb,则有x点乘y = (a+(t^2-3)b) 点乘(-ka+tb)=-ka^2 +tab -k(t^2-3)ab +t(t^2-3)b^2=-ka^2 + t(t^2-3)b^2 (ab =0)= -10k + t(t^2-3) (a^2 = |a|^2 = 10,...向量a 乘 向量b 并不为 0 (而是根号3)所以a不垂直于b应该是向量a=(根号3,-1),??
推荐
- 已知向量a=(根号3,1),向量b=(1/2,根号3/2),且存在实数k和t,使得x=a+(t^2-3)b,y=-ka+tb,且x垂直y试求﹙k+t^2﹚/t的最小值
- 已知向量a=(根号3,-1),b=(1/2,根号3/2),若存在非零实数k,t使得x=a+(t平方-3)b,y=-ka+tb,且x垂直y.
- 已知向量a=(根号3,-1),b=(1/2.根号3/2),存在实数k和t,使得x=向量a+(t^2-3)b,y=-ka+tb,且x垂直y
- 已知平面向量a=(根号3,-1),b=(1/2,根号3/2)若存在不同时为零的实数k和t,使x=a+(t^2-3)b,y=-ka+tb,且X
- 已知a=(根号3,-1)b=(1/2,根号3/2)且存在实数K和T,使得x=a+(t²-3)b,y=-ka+tb,
- 怎么计算一个方形装满水的容积
- 物理存储器
- 我今天去了书店.我买了一个书夹,用来夹试卷的.它花了我的3元钱.翻译成英文,
猜你喜欢