函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A. (-1,+∞)
B. (-∞,-1)
C. (2,+∞)
D. (-∞,-2)
人气:213 ℃ 时间:2019-08-18 08:37:46
解答
设F(x)=f(x)-(2x+4),
则F(-1)=f(-1)-(-2+4)=2-2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(-1,+∞),
即f(x)>2x+4的解集为(-1,+∞).
故选:A
推荐
- 已知函数f(x)是定义在R上的可导函数,且f(-1)=2,f′(x)>2,则不等式f(x)>2x+4的解集为( ) A.(-∞,-1) B.(-1,+∞) C.(-1,0) D.(0,+∞)
- 已知函数f(x)是定义在R上的可导函数,且f(-1)=2,f′(x)>2,则不等式f(x)>2x+4的解集为( ) A.(-∞,-1) B.(-1,+∞) C.(-1,0) D.(0,+∞)
- 函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的阶级为
- 函数f(x)的定义域为R,f(-1)=2,对任意x属于R,f(x)导大于2,则f(x)大于2x+4的解集为?
- 已知函数f(x)是定义在R上的可导函数,且f(-1)=2,f′(x)>2,则不等式f(x)>2x+4的解集为( ) A.(-∞,-1) B.(-1,+∞) C.(-1,0) D.(0,+∞)
- 下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵.
- 初一数学化简-Ia-cI-IaI+Ib+aI
- This is her father and this is her mother.改为同义句
猜你喜欢