π |
2 |
π |
4 |
kπ |
2 |
∴函数f(x)的定义域为{x|x≠
π |
4 |
kπ |
2 |
∵f(x)的定义域关于原点对称,
且f(-x)=
6cos4(−x)−5cos2(−x)+1 |
cos(− 2x) |
6cos4x−5cos2x+1 |
cos 2x |
∴f(x)是偶函数.
又∵当x≠
π |
4 |
kπ |
2 |
6cos4x−5cos2x+1 |
cos 2x |
=
(2cos2x−1)(3cos2x−1) |
cos 2x |
∴f(x)的值域为{y|-1≤y<
1 |
2 |
1 |
2 |
6cos4x−5cos2x+1 |
cos 2x |
π |
2 |
π |
4 |
kπ |
2 |
π |
4 |
kπ |
2 |
6cos4(−x)−5cos2(−x)+1 |
cos(− 2x) |
6cos4x−5cos2x+1 |
cos 2x |
π |
4 |
kπ |
2 |
6cos4x−5cos2x+1 |
cos 2x |
(2cos2x−1)(3cos2x−1) |
cos 2x |
1 |
2 |
1 |
2 |