| π |
| 2 |
| π |
| 4 |
| kπ |
| 2 |
∴函数f(x)的定义域为{x|x≠
| π |
| 4 |
| kπ |
| 2 |
∵f(x)的定义域关于原点对称,
且f(-x)=
| 6cos4(−x)−5cos2(−x)+1 |
| cos(− 2x) |
| 6cos4x−5cos2x+1 |
| cos 2x |
∴f(x)是偶函数.
又∵当x≠
| π |
| 4 |
| kπ |
| 2 |
| 6cos4x−5cos2x+1 |
| cos 2x |
=
| (2cos2x−1)(3cos2x−1) |
| cos 2x |
∴f(x)的值域为{y|-1≤y<
| 1 |
| 2 |
| 1 |
| 2 |
| 6cos4x−5cos2x+1 |
| cos 2x |
| π |
| 2 |
| π |
| 4 |
| kπ |
| 2 |
| π |
| 4 |
| kπ |
| 2 |
| 6cos4(−x)−5cos2(−x)+1 |
| cos(− 2x) |
| 6cos4x−5cos2x+1 |
| cos 2x |
| π |
| 4 |
| kπ |
| 2 |
| 6cos4x−5cos2x+1 |
| cos 2x |
| (2cos2x−1)(3cos2x−1) |
| cos 2x |
| 1 |
| 2 |
| 1 |
| 2 |