Rt△ABC中,C=90度,求使不等式a^2(b+c)+b^2(c+a)+c^2(a+b)大于等于kabc对所有直角三角形都成立的k最大值
求助多次,无人能解,求高手帮忙
人气:168 ℃ 时间:2020-05-07 22:22:02
解答
a^2(b+c)+b^2(c+a)+c^2(a+b)=a^2b+a^2c+b^2c+b^2a+(a^2+b^2)(a+b)=a^3+b^3+c^3+2a^2b+2ab^2
因不等式对称,我们不妨设a≥b
则上式≥a^3+b^3+c^3+2b^3+2b^3 当a=b时成立
≥3倍三次根号下5a^3b^3c^3=3倍3次根号下5 乘abc
所以K最大值是 3倍3次根号下5 当三角形为等腰直角三角形时
推荐
- Rt△ABC中,C=90度,求使不等式a^2(b+c)+b^2(c+a)+c^2(a+b)大于等于kabc对所有直角三角形都成立的k最大值
- 在Rt三角形ABC中,角C等于90度,a=2,c=3,解这个直角三角形
- 在RT△ABC中,∠C=90°,∠A-∠B=30°,a-b=2,解这个直角三角形
- 在RT△ABC中 ∠C=90° ∠A=60° a+b=12 解这个直角三角形
- 已知RT三角形ABC中∠C=90°,a-b=2,∠A=60°,解这个直角三角形
- x的平方减7=(x减5)的平方
- 在原电池中,发生自发反应的一定是负极吗
- --lily is in hospital.---Really?i ------know ,I------go and visit her.(didn't ,am going to )对吗
猜你喜欢