如图所示:设正四面体ABCD的棱长为a,连接ED,取ED的中点M,连接CM、FM,则FM∥AE,且FM=
| 1 |
| 2 |
∴异面直线AE与CF所成的角即为∠CFM或其补角,
∵AE=CF=
| ||
| 2 |
∴FM=
| ||
| 4 |
在Rt△MEC中,EC=
| 1 |
| 2 |
| ||
| 4 |
∴MC=
| ||
| 4 |
∴cos∠CFM=
| CF2+FM2−MC2 |
| 2CF•FM |
| 2 |
| 3 |
∴∠CFM=arccos
| 2 |
| 3 |
故选Arccos
| 2 |
| 3 |
如图所示:设正四面体ABCD的棱长为a,| 1 |
| 2 |
| ||
| 2 |
| ||
| 4 |
| 1 |
| 2 |
| ||
| 4 |
| ||
| 4 |
| CF2+FM2−MC2 |
| 2CF•FM |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |