∴OA=OC=AB=BC=3,
∴B(3,3),
又∵点B(3,3)在函数y=
k |
x |
∴将B的坐标代入反比例函数解析式得:
k |
3 |
(2)分两种情况:
①当点P在点B的左侧时,矩形OEPF和正方形OABC不重合部分为矩形PFCM,
∵P(m,n)在函数y=
k |
x |
∴mn=9,
∵PE=n,ME=BA=3,
∴PM=PE-ME=n-3,又CM=OE=m,
∴S=CM•PM=m(n-3)=mn-3m=9-3m=
9 |
2 |
解得:m=1.5,可得n=6,
∴点P的坐标为(1.5,6);
②当点P在点B的右侧时,矩形OEPF和正方形OABC不重合部分为矩形ANPE,
∵P(m,n)在函数y=
k |
x |
∴mn=9,
∵OE=PF=m,NF=AO=3,
∴AE=OE-OA=m-3,又PE=n,
∴S=AE•PE=n(m-3)=mn-3n=9-3n=
9 |
2 |
解得n=1.5,可得m=6,
∴点P的坐标为(6,1.5).
综上,P的坐标为(1.5,6)或(6,1.5).