设数列{an}的前n项和为Sn,a1=1,an=sn/n+2(n-1),求证数列{an}是等差数列,并求其通项公式an
人气:330 ℃ 时间:2019-09-23 14:02:27
解答
an=sn/n+2(n-1)
Sn=nan-2n(n-1)
S(n-1)=(n-1)a(n-1)-2(n-1)(n-2)
Sn-S(n-1)=an=nan-2n(n-1)-[(n-1)a(n-1)-2(n-1)(n-2)]
=nan-2n(n-1)-(n-1)a(n-1)+2(n-1)(n-2)
=nan-2n(n-1)-na(n-1)+a(n-1)+2n(n-1)-4(n-1)
=n[an-a(n-1)]+a(n-1)-4(n-2)
n[an-a(n-1)]-[an-a(n-1)]=4(n-1)
[an-a(n-1)](n-1)=4(n-1)
an-a(n-1)=4
所以数列{an}是等差数列,公差d=4
An=a1+(n-1)d=1+(n-1)*4=4n-3
推荐
- 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
- 等差数列an中,a1=1前n项和Sn,满足条件S2n/Sn=4n+2/n+1,求an通项
- 已知Sn为等差数列an的前n项和 a1=25 a4=16
- 在数列an中,Sn是数列an前n项和,a1=1,当n≥2时,sn^2=an(Sn-1/2) (1)证明1/Sn为等差数列,并求an
- 设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列
- Some of them must be parents themselves.
- 1+2+3+.+10这个题咋做呢?
- the afternoon this Sunday前的介词用什么
猜你喜欢