若椭圆x^2+y^2/2=1任意两条相互垂直的切线相交于点P,证明,点P在一个定圆上
人气:484 ℃ 时间:2020-06-02 14:13:32
解答
设直线y=k(x-p)+q①与椭圆x^2+y^2/2=1②相切,则
把①代入②,2x^2+(kx+q-kp)^2=2,
整理得(2+k^2)x^2+2k(q-kp)x+(q-kp)^2-2=0,
△/4=k^2(q-kp)^2-(2+k^2)[(q-kp)^2-2]
=4+2k^2-2(q-kp)^2=0,
∴2+k^2-(q-kp)^2=0,③
以-1/k代k,得2+1/k^2-(q+p/k)^2=0,
∴2k^2+1-(kq+p)^2=0,④
③+④,3(k^2+1)-(k^2+1)(p^2+q^2)=0,
∴p^2+q^2=3,
即互相垂直的切线的交点P(p,q)在圆x^2+y^2=3上.
推荐
- 给定椭圆C:x^2/a^2+y^2/b^2=1以及圆O:x^2+y^2=b^2 自椭圆上异于其顶点的任意一点P做圆O的两条切线,
- 椭圆x^2+y^2=1(a大于b大于0)和圆:x^2+y^2=b^2,过圆上一点P引圆O的两条切线,切点分别为A,B..
- 椭圆C:x^2/3+y^2=1,过圆d:x^2+y^2=4上任意一点P作椭圆的两条切线m,n,求证M⊥n
- 若椭圆x^2/a^2+y^2/b^2=1(a>b>1)内有圆x^2+y^2=1,该圆的切线与椭圆交于A,B两点,
- 椭圆公式:x^2/2+y^2=1 圆:x^2+y^2=2/3 圆切线交椭圆于A、B,证明以AB为直径的圆恒过定点
- 左边是木字旁右边上边一个立下边一个口念什么字啊?
- 机械硬盘接口有哪些
- 有一批人合买一条船,后有10人退出,经过计算,剩下的人买船每人要多拿出一元,
猜你喜欢