在△ABC中,a,b,c分别是角A,B,C的对边,若向量m=(2,0)与n=(sinB,1-cosB)的夹角为π/3,求角B的大
若b=根号3,求a+c的最大值?
人气:485 ℃ 时间:2019-08-19 07:27:57
解答
(1)m·n=(2,0)·(sinB,1-cosB)=2sinB又|m|=2,|n|=根号((sinB)^2+(1-cosB)^2)=根号(2-2cosB)故m·n=|m||n|cos=2·根号(1-2cosB)·cos(60度)=根号(1-2cosB)所以2sinB=根号(1-2cosB)两边平方:4(sinB)^2=1-2cosB即...
推荐
- 已知向量m=(sinB,1-cosB),且与向量n=(2,0)夹角为π/3,其中A,B,C是三角形ABC的内角
- 在三角形ABC中,角ABC的对边分别为abc,若向量m=(2,0)与n=(sinB,1-cosB)的夹角为π/3
- 在三角形ABC中,a,b,c分别是A,B,C,的对边,若向量m=(2,0)与n=(sinB,1-cosB)所成的角为 π/3
- △ABC角A,B,C所对的边分别为a,b,c,向量m=(cosB,sinB-1),n=(1,根号3),且向量m⊥n .
- 已知向量m=(sinB,1-cosB),且与向量n=(2,0)所成角为π/3,其中 A,B,C是三角形ABC的内角
- 一椭圆与一双曲线有共同焦点,他们的离心砺之和为二分之五,若椭圆的方程为16分之X平方加12分之Y平方等...
- 求计算弱酸弱碱PH的公式
- 求许地山的《落花生》原文!
猜你喜欢