>
数学
>
如图,BD是等边△ABC一边上的高,延长BC至E,使CE=CD,
(1)试比较BD与DE的大小关系,并说明理由;
(2)若将BD改为△ABC的角平分线或中线,能否得出同样的结论?
人气:327 ℃ 时间:2019-09-17 09:27:35
解答
(1)BD=DE,
∵△ABC是等边三角形,
∴BA=BC,∠ABC=∠ACB=60°,
又∵BD是AC边上的高,
∴∠1=∠2=
1
2
∠ABC=30°,
∵CE=CD,
∴∠CDE=∠CED,
又∵∠ACB=∠CDE+∠CED=60°,
∴∠CDE=∠CED=30°,
∴∠2=∠CED,
∴BD=DE;
(2)若将BD改为△ABC的角平分线或中线,能得出同样的结论.
道理同(1),由于等腰三角形存在三线合一定理.
推荐
如图,已知等边△ABC中,D是BC上一点,△DEB为等边三角形,连接CE并延长交AB的延长线于点M,连接AD并延长与BE的延长线交于点N,再连接MN. 求证:△BMN是等边三角形.
如图,已知:△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连结EC、ED,试说明CE=DE.
初二数学题(等边三角形)
等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H, ①求证:△BCE≌△ACD; ②求证:CF=CH; ③判断△CFH的形状并说明理由.
在消费者均衡点以上的无差异曲线的斜率大于预算线的斜率吗?为什么?
西欧和日本的经济恢复和发展过程中共同的因素有哪些?
简述蛋白质分离的常用方法及其原理,
猜你喜欢
我希望可以具体点的.
有甲乙两桶油甲重40千克乙重35千克从甲桶到多少有在乙桶使乙桶油是甲桶的1.5倍
在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.试判断△PDQ的形状,并证明.
he is a famous person in this r____ .(a large area or part)
李白的送别诗(至少2首)
已知,正三棱锥P-ABC中,侧棱PA=a,角APB=30度,D,E分别是侧棱PB,PC上的点,则三角形ADE的周长最小值为...
1、某商场衣服打八折后降了50元,这件衣服原价多少元?
标况下,7点5克某气体A和4克甲烷的体积相等,求A气体的密度;同温同压下,质量相等的锌镁铝分别与盐酸...
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版