当q≠1时,∵S3,S2,S4成等差数列
∴2S2=S3+S4
∴2
a1(1−q2) |
1−q |
a1(1−q3) |
1−q |
a1(1−q4) |
1−q |
得q=-2,
∴an=4×(-2)n-1=(-2)n+1
( II)bn=n+1,
∴
1 |
bnbn+1 |
1 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
∴Tn=(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
n+2 |
n |
2(n+2) |
1 |
bn•bn+1 |
a1(1−q2) |
1−q |
a1(1−q3) |
1−q |
a1(1−q4) |
1−q |
1 |
bnbn+1 |
1 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
n+2 |
n |
2(n+2) |