已知函数f(x)=a/e的x次方+e的x次方/a在R上是偶函数,则(1).求出a的值 (2)若f(x)在(0,正无穷大]
上是增函数,求在这个区间的最大值和最小值
人气:160 ℃ 时间:2019-08-21 02:26:03
解答
f(x) = a/e^x + e^x/a在R上是偶函数
f(-x) = f(x)
a/e^(-x) + e^(-x)/a= a/e^x + e^x/a
ae^x + 1/(ae^x) = a/e^x + e^x/a
(a-1/a)e^x -(a-1/a)*1/e^x = 0
(a-1/a)(e^x-1/e^x) = 0
除了x=0时之外,e^x-1/e^x≠0
∴a-1/a=0 ,∴a^2=1
∴a=±1
a=-1时,f(x) = -1/e^x + e^x/(-1) = -e^(-x) - e^x
f‘(x) = -e(-x)*(-1)-e^x = e^(-x)-e^x
x≥0时,e^(-x)≤1,e^x≥1,f‘(x) = e^(-x)-e^x ≤0,f(x)单调减,不符合题目关于单调增的要求.
a=1时,f(x) = 1/e^x + e^x/1 = e^(-x) + e^x
f‘(x) = e(-x)*(-1)+e^x = -e^(-x)+e^x
x≥0时,e^(-x)≤1,e^x≥1,f‘(x) = -e^(-x)+e^x ≥0,f(x)单调增,符合题目关于单调增的要求
此时当x=0时,取最小值f(0) = 1/e^0+e^0=1+1=2
x趋近于+∞时,1/e^x 趋近于0,e^x趋近于+∞,最大值不存在
推荐
- 设a大于0,f(x)=a分之e的x次方+e的x次方分之a是R上的偶函数,1.求a的值.2.证明f(x)在(0,正无穷大)上是
- 已知函数f(x)=x负2次方+1 1.证明此函数是偶函数 2.证明此函数在(0,正无穷大)上为增函数
- 已知函数f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=2x-1,则f(log210)的值( ) A.35 B.85 C.−58 D.−53
- 设a大于0,f(x)=e的x次方除于a加上e的x次方分之a是R上的偶函数,(1)求实数a的值.
- 设:函数f(x)=x(e的x次方 × ae的负x次方(x属于R)是偶函数,求a的值
- 一些数字,第一行一个数字为1,第二行两个为:2 3,第三行有三个为:4 5 6 …第2011个数字在第几排第几个
- “在小丑鱼心甘情愿回到大海之前,会一直等待,你回来...”这句话表达一种什么样的心情,意思是什么?
- 物质由什么组成像H2o2
猜你喜欢
- The boys watch TV ( ) of playing basketball.括号里填什么,i 开头的
- 一个数的无穷小次幂等于什么
- 英语翻译
- 连词成句 has,an,apple,Li Lei,red
- 求一周内每天温差的平均数,数据如下7,9,12,9,9,10,8
- 作文:那天,我捡到快乐的钥匙
- 求一篇大学英语作文,题目是“高级电子设备对于大学生是必要的么?”议论文形式,三段论式.急
- 人教版五年级上册数学书96和97页答案