> 数学 >
函数y=x-sinx在[兀/2,兀]上的最大值为() ①兀 ②兀/2 -1
函数y=x-sinx在[兀/2,兀]上的最大值为()
①兀 ②兀/2 -1 ③3兀/4 +1 ④3兀/4-√2/2
人气:446 ℃ 时间:2020-06-12 19:10:44
解答
函数y=x-sinx
求导:y'=1-cosx≥0恒成立
所以函数y=x-sinx是增函数
那么当x=π时y取得最大值
π-sinπ=π
选①
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版