如图,四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.当∠A=?ABCD是正方形
不用相似!
人气:198 ℃ 时间:2019-08-22 12:11:32
解答
当∠A=45°时,菱形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠1=45°,
∴∠EBF=2∠A=90°,
∴菱形BECF是正方形
推荐
- 四边形ABFC∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=AE证四边形BECE是什么特殊的四边形.
- 已知:如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE. (1)求证:四边形BECF是菱形; (2)当∠A的大小为多少度时,四边形BECF是正方形?
- 如图,已知在四边形ABFC中∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE. (1)试探究,四边形BECF是什么特殊的四边形并证明之; (2)若四边形BECF的面积是6cm2且BC+AC=105cm时.求AB
- 在四边形ABCD中,角ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE
- 2.如图,已知:在四边形ABFC中,=90 的垂直平分线EF交BC于点D,交AB于点E,且CF=AE (1) 试探究,四边形BECF是
- C9H20的35个同分异构体的结构简式
- I hope you can finish your task().A.success B.successful C.successful D.succed
- 已知向量OP=(cosθ,sinθ),向量OQ=(1+sinθ,1+cosθ)(θ∈[0,π]),则│PQ│的取值范围是____.
猜你喜欢