设f(n)=1+1/2+1/3+...+1/n,是否存在g(n)使f(1)+f(2)+...+f(n-1)=g(n)f(n)-g(n) n>=2的一切自然数成立,求
人气:133 ℃ 时间:2020-01-25 20:38:35
解答
f(1)+f(2)+...+f(n-1)=g(n)f(n)-g(n)-----
g(n)=【f(1)+f(2)+...+f(n-1)】/【f(n)-1】-----
g(n)=[1+(1+1/2)+(1+1/2+1/3+.+(1+1/2+1/3+...+1/(n-1)]/(1+1/2+1/3+...+1/n-1)--------
g(n)={(n-1)*1+(n-2)*1/2+(n-3)*1/3+.+[n-(n-1)]*1/(n-1)}/(1/2+1/3+...+1/n)------
g(n)={(n-1)+(n/2-1)+(n/3-1)+.+[n/(n-1)-1]}/(1/2+1/3+...+1/n)------
g(n)={n+n/2+n/3+...+n/(n-1)-(n-1)*1}/(1/2+1/3+...+1/n)------
g(n)=[n/2+n/3+...+n/(n-1)+1]/(1/2+1/3+...+1/n)------
g(n)=[n(1/2+1/3+...+1/n)]/(1/2+1/3+...+1/n)------
g(n)=n
推荐
- 设f(n)=1+1/2+1/3+...+1/n,是否存在于自然数n的函数g(n),使等式f(1)+f(2)+...+f(n-1)=g(n).[f(n)-1]
- f(n)=1+1/2+1/3+...1/n,是否存在关于自然数n的函数g(n),使等式f(1)+f(2)+...+f(n-1)=g(n)×【f(n)-1】对于n≧2的一切自然数都成立?并证明你的结论.
- f(x)=lg[1+2^x+3^x+……+(n-1)^x+n^xa]/n,其中a是实数,n是任意给定的正自然数且n≥2,如果f(x)当x∈(-∞,1]时有意义,求a的取值范围.
- 已知f(n)=(2n+7)•3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为( ) A.30 B.26 C.36 D.6
- 已知f(n)=k(n是自然数),其中k是0.9196461178…的小数点后的第n位数字,如 f(1)=9,f(2)=1,f(3)=9,f(4)=6,则5f…{…f[f(5)]}555个f+8f…{…f[f(8)]}888个f=_.
- 帮我解到数学题,我会追分的!
- 用平方差公式分解因式12x²-3y²
- 两个非互质或倍数关系的数,最小公倍数是不是它们的乘积除以二?
猜你喜欢