人气:309 ℃ 时间:2020-04-17 07:21:08
解答
f(x)=ax^3+bx^2+cx+d,在x=1处取得极值,有3a+2b+c=0,可知c大于0,a小于0,c=-3a-2b
因为ab/a>-3-2b/a
解得:-1因为其图像在x=m处切线斜率为-3a,所以3am^2+2bm+c=-3a由于该方程存在实根m,故△>=0
有△=4b^2+24ab≥0,b/a≥0或b/a≤-6
综上所述:0≤b/a<1
推荐
- 设f(x)=ax^3+bx^2+cx+d,(a
- 若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求若过点A(2,m)可做曲线y=f(x)
- 高中导数中f(x)=ax^3+bx^2+cx 若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求
- 已知R上的奇函数f(x)=ax^3+bx^2+cx+d在点P(1)处的切线斜率为-9,且当x=2时函数f(x)有极值,求函数f(x)的解.
- 已知函数f(x)=ax的三次方的+bx二次方+cx在x=+/-1处取得极值,且在x=0处的切线的斜率为-3.求f(x)的解析式
- 司空见惯意思:
- 设i,j分别是平面直角坐标系内x轴,y轴的正方向上的单位向量,
- 用列举法表示下列各集合:(2){x|x=4k-1,-2<k<2,k∈Z}
猜你喜欢