在四棱锥P-ABCD中,若PA⊥平面ABCD,且四边形ABCD是菱形,求证:平面PAC⊥平面PBD.
人气:114 ℃ 时间:2019-08-20 23:50:08
解答
如图示,连结AC和BD,相交于点O,
∵四边形ABCD是菱形,
∴AC⊥BD,
![](http://hiphotos.baidu.com/zhidao/pic/item/d01373f082025aaf3d971f4cf8edab64024f1a8b.jpg)
∵PA⊥平面ABCD,
∴PA⊥BD,且PA∩AC=A,
∴BD⊥平面PAC,
∴平面PAC⊥平面PBD.
推荐
- 在四棱锥P-ABCD中,若PA⊥平面ABCD,且四边形ABCD是菱形,求证:平面PAC⊥平面PBD.
- 如图四边形ABCD是菱形,PA⊥平面ABCD,Q为PA的中点,求证:(1)PC‖平面QBD(2)BD⊥平面PAC
- 如图,ABCD是菱形,PA垂直平面ABCD,PA=AD=2,∠BAD=60度,(1)证明:平面PBD垂直平面PAC(已会做了)
- 底面ABCD是正方形,P为平面ABCD外一点PA⊥平面ABCD.求证:平面PBD⊥平面PAC
- 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD于O. (Ⅰ)证明:平面PBD⊥平面PAC; (Ⅱ)设E为线段PC上一点,若AC⊥BE,求证:PA∥平面BED.
- 计算1+3+5+7+9+11+13+15+17+19.
- 蜜蜂的巢是六边形(数学问题)
- 一个物体做匀速圆周运动,合外力做的功一定是0吗?
猜你喜欢