设矩阵A=(a1,a2,a3,a4)的秩r(A)=3,且a1=a2+a3.设β=a1+a2+a3+a4,则线性方程组Ax=β的通解为
人气:101 ℃ 时间:2020-03-18 15:05:13
解答
秩r(A)=3,
那么齐次方程组Ax=0有4-3=1个解向量,
现在a1=a2+a3
所以
a1-a2-a3+0*a4=0
即Ax=0的解为(1,-1,-1,0)^T
又β=a1+a2+a3+a4
所以
A*(1,1,1,1)^T=β,即非齐次方程的特解为(1,1,1,1)^T
于是Ax=β的通解为
c*(1,-1,-1,0)^T+(1,1,1,1)^T,C为常数
推荐
- 设矩阵A=(a1,a2,a3,a4),矩阵A的秩R(A)=3,且a2=a3+a4,b=a1-a2+a3-a4,求方程Ax=b的通解
- A为4×3矩阵,a1,a2,a3是非齐次线性方程组Ax=b的三个线性无关的解,求Ax=b的通解.A的秩是多少.
- 非齐次线性方程组的系数矩阵秩为3,a1,a2,a3是它3个解向量,a1+a2=(1 0 2 1)T,a2+a3=(0 1 3 1)T,求通解.
- 设5×4矩阵A的4个列向量a1,a2,a3,a4线性无关,b=a1+a2-a3-a4,那么线性方程组AX=b有__解,并且它的解为__
- 设a1 a2 a3是齐次线性方程组Ax=0的一个基础解系,证明a1+a2,a2+a3,a3+a4也是Ax=0的一个基础解系
- He ___(teach) you English well,doesn't he?
- 露西用英语怎么说?We can't put our bikes over there.改祈使句
- 闻一多(打一字)
猜你喜欢