证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数
人气:348 ℃ 时间:2019-11-12 09:28:23
解答
1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩 阵T,使T'AT成对角型,而对角线上的元素就是它的特征根.由此,开证,(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T'AT对角线上的元素...
推荐
猜你喜欢
- 像“有志者,事竟成”这样的格言警句,还有哪些?
- 词语接龙:语重心长→长生不老→
- 这几句英文哪些错误的地方?
- 首字母填空四年级英语练习
- 已知y=f(x+1)为奇函数,切f(x)的图像关于直线x=2对称,当0≤x≤1时,f(x)=2^x,则f(log2^24)的值为?
- 怎么用watch TV,same,love,them,only分别造句?
- -Do you know who cleaned the blackboard,Tina?-Yes,John___.A.do B.does C.did
- 不等式选讲若实数a,b,c满足a^2+b^2+c^2=4,则3a+4b+5c的最大值