证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
人气:197 ℃ 时间:2020-04-16 22:29:45
解答
令g(x)=f(x) x∈(a,b)
g(x)=f(a+) x=a
g(x)=f(b-) x=b
显然g(x)在[a,b]内连续,所以一致连续.当然在(a,b)连续.
g(x)在(a,b)正好为f(x)
推荐
- 高等数学定积分一题证明:设函数f(x)在区间[a,b]上连续,g(x)在[a,b]上连续且不变号,则在[a,b]存在一点E
- 设函数f(x)在区间[a,b]上连续,且f(a)b.证明:至少存在一点ξ∈(a,b),使得……高等数学(上)…
- 设函数f(x)在开区间(a,b)内一致连续,证明存在f(a+)和f(b-)
- 设函数f在开区间(a,b)上连续,f(a+)和f(b-)存在且有限,证明f在(a,b)上一致连续
- 设函数F(X)在开区间(0,2a)上连续,且f(0)=f(2a),证明在零到A上至少存在一点X,使f(x)=f(a+x)
- dutch 到底是德国还是荷兰?
- 先观察有什么规律,填写空格-1,1,0,1,1,2,( ),5,
- 急死啦,英语词
猜你喜欢