求数列通项公式(高中数学)
an是正数数列,已知4Sn={[a(n+1)]^2}-4n-1,且a2,a5,a14构成等比数列,求数列an通项公式.
人气:111 ℃ 时间:2020-01-27 14:29:11
解答
1、
4S1=a²2-4*1-1
S1=a1
a²2=4a1+5
a2=√(4a1+5)
2、
an=Sn-S(n-1)
4an=4Sn-4S(n-1)
=a²(n+1)-4n-1-[a²n-4(n-1)-1]
=a²(n+1)-4-a²n
a²n+4an+4=a²(n+1)
(an+2)²=a²(n+1)
各项均匀为正数
an+2=a(n+1)
a1+2=a2=√(4a1+5)
a1²+4a1+4=4a1+5
a1=1
{an}是一个首项是1,公差是2的等差数列
an=2n-1
推荐
- 高中数学数列求通项公式
- (注:字母后面括号里是脚标)
- 高中数学求数列的通项公式
- 19.一直数列An,A1=m,A(n+1)=2An+3^(n+1).
- 设数列bn的前n项和为Sn.且bn=2-2Sn.数列an为等差数列,a5=14.a7=20.求数列bn通项公式.2,若cn=an*bn(n=1234…),Tn为数列cn的前n项和,求证Tn
- 英语,体育,信息,那几科最有用?
- 已知函数f(x)=2的x次方+2的负x次方a(常数a属于R) 若a小于等于4,求证;函数f(x)在区间【1,正无穷】上是
- 等差数列:1,6,11,16,21,26.是怎样求出来的
猜你喜欢