设有空间四边形ABCD,对角线AC和BD的中点分别是E和F,求证:向量AB+向量CB+向量AD+向量CD=4向量EF
人气:491 ℃ 时间:2019-08-21 00:29:44
解答
向量AB+向量CB=2*向量EB
向量AD+向量CD=2*向量FD
向量FD=向量BF(因为F为BD中点)
向量EB+向量FD=向量EB+向量BF=向量EF
所以,
向量AB+向量CB+向量AD+向量CD=2向量EF
(仔细再看看你的题目吧,是不是抄错了,反正思路是这样,画画图再看看吧)
推荐
- 在四边形ABCD中,对角线AC,BD的中点分别为MN.求证向量AB+AD+CB+CD=MN
- 在四面体abcd中,e,f分别为棱ac,bd的中点求证;向量ab+向量cb+向量ad+向量cd=4向量ef.
- 设有空间四边形ABCD,对角线AC和BD的中点分别为L和M,求证:向量AB+向量CB+向量AD+向量CD=4向量LM
- 空间四边形ABCD,连AC、BD,若AB=CD,AC=BD,E、F分别是AD、BC的中点,用向量方法证明EF为AD、BC的公垂线
- 已知在任意四边形ABCD中,E是AD的中点,F是BC的中点,求证:向量EF=1/2(向量AB+向量DC)
- 有一串数:1,3,8,22,60,164,448,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第2000个数除以9的余数是_.
- I'm looking forward to owning an electronic dictionary so my father is going to buy___for me.
- 作文 春天般的记忆 急 600字
猜你喜欢