> 数学 >
设有空间四边形ABCD,对角线AC和BD的中点分别是E和F,求证:向量AB+向量CB+向量AD+向量CD=4向量EF
人气:334 ℃ 时间:2019-08-21 00:29:44
解答
向量AB+向量CB=2*向量EB
向量AD+向量CD=2*向量FD
向量FD=向量BF(因为F为BD中点)
向量EB+向量FD=向量EB+向量BF=向量EF
所以,
向量AB+向量CB+向量AD+向量CD=2向量EF
(仔细再看看你的题目吧,是不是抄错了,反正思路是这样,画画图再看看吧)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版