在四边形ABCD中,对角线AC,BD的中点分别为MN.求证向量AB+AD+CB+CD=MN
Rt
是4Mn
人气:261 ℃ 时间:2019-08-22 11:38:13
解答
证明:以下皆为向量
MN=1/2(MB+BN)+1/2(MD+DN)
=1/2MB+1/2MD
有因为
MB=1/2(AB+CB),MD=1/2(AD+CD)代入上式得
MN=1/4(AB+CB+AD+CD)将四分之一移到左侧,
命题得证.
推荐
- 设有空间四边形ABCD,对角线AC和BD的中点分别为L和M,求证:向量AB+向量CB+向量AD+向量CD=4向量LM
- 设有空间四边形ABCD,对角线AC和BD的中点分别是E和F,求证:向量AB+向量CB+向量AD+向量CD=4向量EF
- 若M,N是四边形ABCD的一组对边AB,CD的中点,求证向量MN=1/2(向量AD+向量BC)
- 已知M,N分别是空间四边形ABCD的对角线AC和BD的中点,求证向量MN=1/2(向量AB+向量CD)
- 在四面体abcd中,e,f分别为棱ac,bd的中点求证;向量ab+向量cb+向量ad+向量cd=4向量ef.
- 比24多6分之1的数是
- 为什么三重积分用了圆柱坐标表示法就不能再用截面法了?就是先二次积分再一次积分
- I read it in some book or other.Does it matter ____ it was?这个题应该填什么词
猜你喜欢