> 数学 >
在三角形ABC中,三内角A,B,C所对的边分别为a,b,c,若满足a=(√3-1)c
在三角形ABC中.三内角A,B,C,所对的边分别为a,b,c,若满足a=(√3-1)c,tanB/tanc=2a-c/c,求A,B,C的值
人气:319 ℃ 时间:2019-09-26 01:13:51
解答
由正弦定理得,tanB/tanC=(2a-c)/c=(2sinA-sibC)/sinC,在化切为弦,即sinB*cosC=2sinA*cosB-sinC*cosB,所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA所以cosB=1/2,所以B=60.而sinA/sinC=根号3-1,所以sin(120-C)/sinC=根号3-1,所以cotC=2-根号3.所以C=75度,A=45度.B=60度.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版